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Abstract. The field of cluster analysis is primarily concerned with the sorting of data points
into different clusters so as to optimize a certain criterion. Rapid advances in technology have

made it possible to address clustering problems via optimization theory. In this paper, we
present a global optimization algorithm to solve the hard clustering problem, where each data
point is to be assigned to exactly one cluster. The hard clustering problem is formulated as a

nonlinear program, for which a tight linear programming relaxation is constructed via the
Reformulation-Linearization Technique (RLT) in concert with additional valid inequalities
that serve to defeat the inherent symmetry in the problem. This construct is embedded within a

specialized branch-and-bound algorithm to solve the problem to global optimality. Pertinent
implementation issues that can enhance the efficiency of the branch-and-bound algorithm are
also discussed. Computational experience is reported using several standard data sets found in
the literature as well as using synthetically generated larger problem instances. The results

validate the robustness of the proposed algorithmic procedure and exhibit its dominance over
the popular k-means clustering technique. Finally, a heuristic procedure to obtain a good
quality solution at a relative ease of computational effort is also described.

Key words: Clustering problem, Global optimization, Hard clustering, k-Means algorithm,
Reformulation-Linearization Technique

1. Introduction

In many applications, data is generated that needs to be analyzed and
deciphered in order to extract patterns or information from it. One
approach to sift this data is to solve the underlying clustering problem. In
a broad sense, this involves the process of partitioning the given data set
into subsets called clusters, such that some accumulated distance measure
between points belonging to common clusters is minimized. Several cluster-
ing approaches have been developed to effectively analyze and interpret
large volumes of data information. Such clustering problems arise in a
wide scope of applications related to cellular manufacturing, medicine,
archaeology, and marketing (see Hartigan (1975) for a detailed survey on
applications of cluster analysis).
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Mangiameli et al. (1996) have shown that the clustering problem is NP-
Hard and thus, finding a global optimum to this problem is a computa-
tionally onerous task. However, a significant reduction in computational
effort can be achieved by considering judiciously defined subsets of the ori-
ginal data set and applying a more refined partitioning scheme, separately
to each such subset, to arrive at the final clustering pattern. This concept
has lead to a variety of clustering approaches such as statistical methods,
self-organizing maps, hierarchical clustering, and a limited number of opti-
mization techniques.
The most popular among these methods is the hierarchical clustering

method. Hierarchical clustering of data sets can be achieved by two types
of splitting methods: partitive splitting and agglomerative merging. The
hierarchical clustering technique that is most widely in vogue is the
agglomerative approach (see Ward, 1963, Sultan et al., 2002). This begins
with individual data points being singleton clusters, and then at successive
iterations, merges them to generate a tree structure. This tree is referred to
as a dendrogram. The dendrogram is cut off at some level at which a large
distance is observed between pairs of clusters. This approach does not usu-
ally provide a unique clustering, and in fact, does not guarantee that intra-
cluster distance is minimized. To obtain an optimal clustering using this
approach, the dendrogram must be subdivided at several points (Sultan
et al., 2002).
In contrast with this method, partitive clustering initially divides the data

set into a predefined number of clusters by minimizing some criterion (usu-
ally a distance measure). Then, at each iteration, the intra-cluster distance is
minimized and the inter-cluster distance is maximized (Sultan et al., 2002).
In general, solution techniques based on hierarchical clustering have prob-
lems related to robustness and uniqueness of the solution obtained (Luka-
shin and Fuchs, 2000). On the other hand, the limited number of
optimization techniques that are available cannot guarantee that the derived
solution is a global optimum. Moreover, while the number of clusters used
is typically prescribed as a fixed, external parameter for the algorithm being
utilized, there is some interest in also simultaneously determining an opti-
mal number of clusters to use, perhaps given a fixed cost associated with
constructing each cluster (see Dubes, 1987; Jung et al., 2003).
Another important factor involved in solving clustering problems is the

distance measure under consideration. Obviously, optimal clustering
depends on the distance measure being used. Distance measures are divided
into metric and semi-metric measures (Sultan et al., 2002), and most hierar-
chical procedures (that are based on the nearest neighbor approach) utilize
either one of these measures. A semi-metric distance measure is one that
satisfies the following properties for any two vectors i and j in a given data
set: (1) the distance between i and j is positive, i.e., dij > 0; (2) dij ¼ dji,
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and (3) dii ¼ 0. In addition to the above properties, if a distance measure
satisfies the triangle inequality, i.e., dij + djk P dik , then it qualifies as a
metric measure.
In this paper, we consider the hard clustering problem wherein each data

point must be assigned to exactly one cluster. This is in contrast to other
clustering problems where a data point may belong to several clusters with
a membership grade assigned to each data point that represents the likeli-
hood of the data point belonging to that cluster. Such a problem is
referred to as a fuzzy clustering problem (the word fuzzy is derived from
fuzzy programming, and reflects the fact that the specific cluster to which a
data point belongs is only fuzzily identified, and is not described determin-
istically).
The hard clustering problem has been extensively dealt with in the litera-

ture and there are several approaches that have been explored to solve this
problem. The first attempt to solve the clustering problem was by using the
k-means algorithm (Forgy, 1966; McQueen, 1967). This method is widely
used in practice, but often fails to produce a global optimum. Several opti-
mization techniques such as dynamic programming (Jensen, 1969), convex-
ity cuts (Selim, 1982), alternative cutting plane algorithms (Groetschel and
Wakabayashi, 1989), lagrangian relaxation methods (Mulvey and Crowder,
1979) and integer programming formulations coupled with branch-and-
bound strategies (Vinod, 1969; Rao, 1971; Koontz et al., 1975) have been
used to solve the hard clustering problem. Of recent flavor are meta-heuris-
tic search methods such as simulated annealing, tabu search, and the
genetic algorithm. Klein and Dubes (1989) and Selim and Al-Sultan (1991)
were the first to study a simulated annealing approach in this context, and
thenceforth, several other modifications of this procedure have been pro-
posed. Al-Sultan (1995) developed a tabu search algorithm, and Bhuyan
et al. (1991) and Krovi (1992) have advocated a framework using the
genetic algorithm to solve the hard clustering problem. Computational
experience along with a comparison between four heuristic algorithms that
solve the hard clustering problem has been provided by Al-Sultan and
Khan (1996).
In this research effort, we design an optimization approach based on the

Reformulation-Linearization Technique (RLT) (refer Sherali and Adams,
1990, 1994, 1999; Sherali and Tuncbilek, 1992, 1995) to solve the hard clus-
tering problem. The underlying nonlinear, discrete optimization problem is
transformed into an equivalent 0–1 mixed-integer program having a tight
linear programming (LP) relaxation as prescribed by the RLT, and a spe-
cialized algorithm is designed to derive a global optimum.
The remainder of this paper is organized as follows. Section 2 provides a

series of enhanced formulations of the problem based on RLT constructs as
well as the derivation of certain classes of valid inequalities. Accordingly, a
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tailored branch-and-bound global optimization algorithm is also delineated
in Section 2. Section 3 presents computational results using certain standard
test problems from the literature as well as using larger synthetically gener-
ated data sets, and explores the performance of different formulations and
implementation strategies. Finally, Section 4 concludes the paper with a
summary and a discussion on further avenues for research in this area.

2. Hard Clustering Problem

The hard clustering problem can be defined as follows. Given a set of n
data points, each having some s attributes, we are required to assign each
of these points to exactly one of some c clusters (where c is given), so as
to minimize the total squared Euclidean distance between the data points
and the centroid of the clusters to which they are assigned. That is to
say, if data point i, having a location descriptor ai 2 Rs is assigned to
cluster j having a to-be-determined centroid zj 2 Rs, then the associated
penalty is assumed to be proportional to the square of the straight line
distance separation between ai and zj in Rs. An optimal solution to the
clustering problem determines the cluster configuration such that the sum
of all such distances is minimized. This problem can be mathematically
stated as follows.

CP1 : Minimize
Xn

i¼1

Xc

j¼1
wij ai � zj
�� ��2 ð1aÞ

subject to
Xc

j¼1
wij ¼ 1; 8i ¼ 1; . . . ; n ð1bÞ

wP0; ð1cÞ

where ai ¼ ðaik; k ¼ 1; . . . ; sÞT, and zj ¼ ðzjk; k ¼ 1; . . . ; sÞT, and the norm kk
in (1a) represents the Euclidean distance between the two points in its
argument in the s-dimensional space under consideration. We assume that
n > c, because otherwise, the problem would be trivially solved by simply
designating each point to constitute a cluster by itself. Observe also that
for any fixed z, w will automatically be binary-valued at a resultant
extreme point optimum.
For a fixed w, optimality of the resulting convex objective function in z

requires that
Xn

i¼1
wijðzjk � aikÞ ¼ 0; 8j; k; ð2aÞ

that is,
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zjk ¼
Pn

i¼1 wijaikPn
i¼1 wij

; 8j; k; ð2bÞ

where the denominator in (2b) is positive at optimality under our assump-
tion that n > c.
Consequently under the conditions (2a) and (2b), we have that the objec-

tive function (1a) is equivalently given by

Xn

i¼1

Xc

j¼1

Xs

k¼1
wijðzjk � aikÞ2

¼
Xn

i¼1

Xc

j¼1

Xs

k¼1
wijðzjk � aikÞzjk �

Xn

i¼1

Xc

j¼1

Xs

k¼1
wijðzjk � aikÞaik

¼
Xn

i¼1

Xc

j¼1

Xs

k¼1
wija

2
ik �

Xn

i¼1

Xc

j¼1

Xs

k¼1
aikwijzjk: ð3Þ

By (1b), noting that
Pn

i¼1
Pc

j¼1
Ps

k¼1 wija
2
ik ¼

Pn
i¼1
Ps

k¼1 a
2
ik, a constant,

we have that CP1 can be equivalently solved via the following problem.

CP1:1 : Maximize
Xn

i¼1

Xc

j¼1

Xs

k¼1
aikwijzjk ð4aÞ

subject to zjk
Xn

i¼1
wij �

Xn

i¼1
aikwij ¼ 0; 8j; k ð4bÞ

Xc

j¼1
wij ¼ 1; 8i ¼ 1; . . . ; n ð4cÞ

w binary; ð4dÞ

where (4d) has been explicitly imposed to exploit this optimality condition
in the algorithmic process.
Note that by (4b), if we denote for any given solution w to CP1.1, the

sets
Sj ¼ fi : wij ¼ 1g; 8j; ð5Þ

then we have

zjk ¼
X

i2Sj

aik

.
Sj

�� ��; 8k; for each j; ð6Þ

or that the vector zj is a convex combination (with equal weights) of the
points ai, i 2 Sj. Let us now define Ij � f1; . . . ; ng as the set of potential
points i 2 f1; . . . ; ng that are assignable to cluster j (in the absence of any
relevant information or algorithmic restrictions, we would have Ij �
f1; . . . ; ngÞ;8j ¼ 1; . . . ; c, and let us denote
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HðIjÞ ¼ conv ai : i 2 Ij
� �

� zj :
Xs

k¼1
c j
qkzjkOc j

q0 for q ¼ 1; . . . ;Qj

( )
� �HðIjÞ; say; 8j; ð7aÞ

where the set of Qj inequalities in (7a) defines some bounded superset
�HðIjÞ of HðIjÞ. Observe that for notational convenience, we have used the
superscript j in lieu of Ij for the inequalities describing �HðIjÞ in (7a), and
also, note that for isomorphic subsets of f1; . . . ; ng, we can use the same
description of �Hð�Þ. In the simplest case, �HðIjÞ might be taken as an enclos-
ing hyperrectangle as expounded below. Note that HðIjÞ is efficiently com-
putable in polynomial time for points in two-dimensions using the method
described in Manber (1989). (For example, the Graham’s scan algorithm
produces the convex hull in Oðn log nÞ steps.) However, for higher dimen-
sions, computing the convex hull can prove to be an expensive task. Never-
theless, under some specific assumptions, it has been shown in the
literature that the convex hull can be obtained for higher dimensions using
techniques such as neural networks (refer Leung et al., 1997), cutting
planes (Chazelle, 1991), and direct convex hull computations for convex
polyhedra (refer Klapper, 1987; Balas, 1988). In the context of our prob-
lem, we can gainfully employ any such technique to derive suitable valid
inequalities for constructing �HðIjÞ; 8j: For simplicity, regardless of problem
dimension, we will take �HðIjÞ to be a hyperrectangle that bounds the col-
lection of points ai; i 2 Ij, as defined below for each j.

�HðIjÞ ¼ zj : ajkOzjkObj
k; k ¼ 1; . . . ; s

n o
; ð7bÞ

where,

a j
k ¼min aik : i 2 Ij

� �
; 8k; and bj

k ¼max aik : i 2 Ij
� �

; 8k; for each j:

ð7cÞ
Additionally, we could incorporate other valid inequalities that are valid
for HðIjÞ within (7b). In order to maintain generality in presentation of
these various viable algorithmic strategies, we will henceforth assume that
some such suitable set �HðIjÞ as given by (7a) has been obtained.
Now, we can impose the implied constraints defining �HðIjÞ for each j

within CP1.1, where, prior to any further analysis, Ij � f1; . . . ; ng;8j: (Sub-
sequently, we will be modifying the sets Ij iteratively in a branch-and-
bound context.) However, instead of simply imposing these constraints, let
us impose the product of these constraints with each wij and (1� wijÞ;
8i 2 Ij, for each j ¼ 1; . . . ; n, in the spirit of RLT. This yields the following
restatement of CP1.1.

CP1:2 : Maximize
Xn

i¼1

Xc

j¼1

Xs

k¼1
aikwijzjk ð8aÞ
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subject to zjk
Xn

i¼1
wij �

Xn

i¼1
aikwij ¼ 0; 8j; k ð8bÞ

Xs

k¼1
c j
qkzjkwijOcjq0wij; 8i 2 Ij;8j; 8q ð8cÞ

Xs

k¼1
c j
qk zjk � zjkwij

� �
Oc j

q0 1� wij

� �
; 8i 2 Ij;8j;8q ð8dÞ

Xc

j¼1
wij ¼ 1; 8i ¼ 1; . . . ; n ð8eÞ

w 2W; ð8fÞ
where,

W ¼ w binary: wij ¼ 0 for allði; jÞ 2 I�;wij ¼ 1 for allði; jÞ 2 Iþ
� �

ð9Þ
and where

Iþ ¼ ði; jÞ : wij has been fixed at 1 (subject to (8e)
� �

; ð10aÞ

I� ¼ ði; jÞ : wij has been fixed at 0
� �

; ð10bÞ

I f ¼ ði; jÞ : wij is free (i.e., not fixed)
� �

: ð10cÞ

Note that,

Ij ¼ i 2 f1; . . . ; ng : ði; jÞ 2 Iþ [ I f
� �

� i 2 1; . . . ; nf g : ði; jÞ 2= I�f g:
ð11aÞ

Also, for each i 2 f1; . . . ; ng, define Ji � f1; . . . ; cg as the set of assignable
clusters for data point i, i.e.,

Ji � j 2 f1; . . . ; cg : ði; jÞ 2 Iþ [ I f
� �

� j 2 f1; . . . ; cg : ði; jÞ 2= I�f g:
ð11bÞ

Hence, whenever I� ¼ [ (e.g. to initialize the algorithm), we have
Ji � f1; . . . ; cg; 8i ¼ 1; . . . ; n.
There are two other classes of constraints that we can add to (8a)–(8f) in

order to tighten its representation. The first is based on the valid restric-
tions

1O
Xn

i¼1
wijOn� cþ 1; 8j ¼ 1; . . . ; c; ð12aÞ
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which asserts that each cluster should be assigned at least one point, and
so, each cluster contains at most n)c+1 points due to hard clustering.
Furthermore, constraints (12a) can also be multiplied by zjk; 8k; for each j,
in order to generate the following RLT constraints

zjkO
Xn

i¼1
wijzjkOðn� cþ 1Þzjk; 8ðj; kÞ: ð12bÞ

REMARK 1. Note that the right-hand inequalities in (12a) itself, being
implied by (8e, f) and the left-hand inequalities in (12a), can be omitted.
While the right-hand inequalities in (12b) might be useful, their worth is
questionable. Hence, these inequalities, as well as the utility of other RLT
constraints (including those in (12a, b)) and related modeling strategies
were empirically investigated to ascertain their merit, before proposing a
final model. Computational results indicated that these inequalities did at
least marginally improve the algorithmic convergence (refer Table 5 for rel-
evant results). Let us refer to CP1.2 enhanced by the additional valid
inequalities (12a, b) as CP1.3.

REMARK 2. A strong factor that can potentially weaken the relaxation of
CP1.2 and contribute towards its difficulty in solving via a branch-and-
bound approach is the symmetry in the problem structure. Note that for
any given solution, alternative equivalent solutions could be obtained by
simply re-indexing each cluster composition. To circumvent this difficulty,
we propose two alternative sets of hierarchical constraints that could be
used to defeat the symmetry (see Sherali and Smith, 2001, for a general dis-
cussion on this subject).

SYMMETRY STRATEGY 1.

Impose the following constraints:

w11 ¼ 1;w1j ¼ 0; 8j ¼ 2; . . . ; c ð13aÞ
Xn

i¼1
wij �

Xn

i¼1
wi;jþ1; 8j ¼ 2; . . . ; c� 1: ð13bÞ

Note that we can arbitrarily assign some point, say point i = 1 as in (13a),
to the first cluster. For the remaining clusters, to impart some distinctive
identity to these sets, we can require that the indexing be performed in
nonincreasing order of their size. This is represented by (13b). Of course,
whenever a solution includes clusters having common sizes, we could still
produce alternative equivalent solutions by re-indexing. However, (13b)
does curtail this phenomenon.
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SYMMETRY STRATEGY 2.

Initialization: Put the counter r ¼ 1. Find a point p1 2 arglexmin
i¼1;...;n

ai1;f
ai2; . . . ; aisg:
Step 1. If r = c)1, go to Step 3. Else proceed to Step 2.

Step 2. Find a point prþ1 2 argmax
i¼1;...;n
i 6¼p1;...;pr

minimum
t¼1;...;r

ai � apt
�� ��2

� �
:

Increment r by 1, and return to Step 1.

Step 3. Impose the constraints

wprj ¼ 0 for j ¼ rþ 1; . . . ; c
� �

for each r ¼ 1; . . . ; c� 1 ð14Þ

Note that the assertion (14) is valid because we can restrict each of the
identified points pr to belong to one of the first r clusters, for each
r ¼ 1,. . ., c)1. By having selected a dispersed set of points following the
process in Step 2 above (given the ‘‘corner’’ point p1 selected at the initiali-
zation step), we enhance the likelihood that these points also turn out to
belong to different clusters, thereby imparting a specific identity to each
cluster. As before, this tends to eliminate the symmetry effect, although not
completely. In our computational experiments, we test the relative merits
of these two symmetry-defeating strategies.
The augmented problem CP1.2 using (12a, b) along with (13a, b) or (14)

can be restated as follows, where we have substituted

yijk ¼ wij zjk; 8i; j; k ð15Þ
in the spirit of RLT, recognizing Proposition 1 as given below.
CP1.4:

Maximize
X

i2Ij

X

j2Ji

Xs

k¼1
aik yijk ð16aÞ

subject to
X

i2Ij
yijk �

X

i2Ij
aikwij ¼ 0; 8j; k ð16bÞ

Xs

k¼1
c j
qkyijkOc j

q0wij; 8i 2 Ij; 8j; 8q ð16cÞ

Xs

k¼1
c j
qk zjk � yijk
� �

Oc j
q0 1� wij

� �
; 8i 2 Ij; 8j; 8q ð16dÞ

X

j2Ji
wij ¼ 1; 8i ¼ 1; . . . ; n ð16eÞ
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X

i2Ij
wij � 1; 8j ¼ 1; . . . ; c ð16f Þ

zjkO
X

i2Ij
yijk � ðn� cþ 1Þzjk; 8j; k ð16gÞ

Constraintsð13a, bÞ or ð14Þ ð16hÞ

w 2W: ð16iÞ

PROPOSITION 1. For any feasible solution to (16a) – (16i), we have that
(15) holds true. Hence, (16a)–(16i) is an equivalent linear 0-1 mixed integer
programming (MIP) representation of CP1.

Proof. For any (i, j), suppose that wij ¼ 0. Since �HðIjÞ (as defined in (7a, b))
is a bounded set, its homogeneous system has a unique solution given by
the 0-vector. Hence, by (16c), we have that yijk � 0;8k, and therefore, (15)
holds true in this case. Similarly, if wij = 1, for any (i, j), then (16d)
implies that ðzjk–yijkÞ ¼ 0; 8k, or that (15) again holds true. This completes
the proof.
We can now design a branch-and-bound algorithm to solve CP1.4 based

on the following specialized features, as opposed to using default strategies
of a standard MIP solver such as CPLEX-MIP 8.1.0 for this purpose.

(a) Upper bounds can be computed by using the LP relaxation to (16a)–
(16i). Note that in formulating (16a)–(16i), given (10a)–(10c), for any
partial solution corresponding to a node subproblem, we redefine Ij,
Ji, and �HðIjÞ as in (11a), (11b), and (7a)–(7c) respectively, and use
this to reconstruct the model representation, including the derivation
of (16c) and (16d).

(b) Heuristic solutions can be derived at each node based on a rounding
scheme applied to the LP solution. Specifically, denoting �w as part of
the LP relaxation solution obtained for any node subproblem, if �w is
binary-valued, then by Proposition 1, the LP solution is optimal for
the node subproblem and directly provides a feasible solution for
CP1.4 (as well as CP1). We can therefore fathom this node and
update the incumbent solution, if necessary. Otherwise, we can round
the �w solution to the nearest binary solution subject to (16e) (also
subsequently ensuring (16f), i.e., each cluster inherits at least one
assignable point). Here, for each data point u, we determine
�wuv ¼ maxf�wuj : j 2 Jug, with ties broken by selecting a cluster having
the smallest value for Ij

�� �� and we assign �wuv ¼ 1 and �wuj ¼ 0; 8j 2 Ju;
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j 6¼ v. (A more comprehensive tie-breaking rule would be to evaluate
the objective function (given by (1a)) corresponding to all possible
alternative rounded solutions, and pick the best one among them.
However, this would lead to a considerably greater computational
effort at each node, and was therefore not implemented in our com-
putations.) Using this resulting binary �w solution, we then compute
the corresponding z-values using (2b), and hence obtain a feasible
solution for CP1, which can be used to possibly update the incum-
bent solution for CP1.4, upon invoking (15). (For large-scale prob-
lems, the overall procedure could be terminated after applying such
an LP based heuristic method at node-zero itself, or by using some
limited branching scheme in order to prescribe a heuristic solution to
the problem.)

(c) To select a branching variable, we compute the total absolute dis-
crepancy in the linearized objective terms in (16a) relative to the non-
linear product terms these represent according to (15), as given by

hij ¼
Xs

k¼1
aikð�yijk � �wij�zjkÞ
�� ��; 8ði; jÞ ð17aÞ

where �w; �z; �yð Þ solves the LP relaxation CP1:4 to CP1.4 given by
(16a) – (16i). Then, in one partitioning strategy, we branch on the
dichotomy that wuv ¼ 0 or 1; where

u; vð Þ 2 argmax
ði;jÞ2I f

hij
� �

: ð17bÞ

Naturally, on the branch wuv ¼ 1; we also set wuj ¼ 0; 8j 6¼ v; and on the
branch wuv ¼ 0; the sets Iv and Ju would now not include the respective
indices u and v, and �HðIvÞ would accordingly exclude au in the convex hull
computation or its approximation. h

REMARK 3. Exploiting the structure of the inherent generalized upper
bounding (GUB) constraints (16e), we also explore an alternative specially
ordered set (SOS) branching strategy. In this scheme, defining hij as in
(17a), and denoting hi �

P
j2Ji hij, we compute u 2 argmax hif g. (Note that

by Proposition 1, if hu > 0 then the vector ð�wuj; j 2 JuÞ is not binary-val-
ued; else, we simply select u such that the total fractionality of the compo-
nents of this latter vector is a maximum.) We now partition Ju into two
children nonempty sets, Ju1 and Ju2, as follows, where we then construct
two subproblem nodes in the branch-and-bound tree corresponding to the
respective imposed branching restrictions

P
j2Ju1 wuj ¼ 1 and

P
j 2

Ju2 wuj ¼ 1. To determine this partition Ju1 and Ju2 of Ju, we first arrange
the huj values, j 2 Ju, in nonincreasing order. Let this sorted set be
fhuj1 ; huj2 ; . . . ; hujlg, where l ¼ Juj j � 2. Now, define p � 1 to be the smallest
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integer such that
Pp

r¼1 hujr � hu=2: Note that 1Op < l, by virtue of the
sorted list. Accordingly, we then define Ju1 ¼ fj1; . . . ; jpgand Ju2 ¼
f jpþ1; . . . ; jlg. Likewise, for each of these children nodes, the sets Ij would
then be revised accordingly. (d) Using the LP dual solution, a reduced cost
cut based on requiring the objective function to be greater than or equal to
the incumbent lower bound can be constructed in terms of w, by surrogat-
ing and dualizing all constraints except for (16e) and 0OwijO1; 8ði; jÞ: Log-
ical tests can be conducted on this in order to possibly fix some w-variables
at 0 or 1 values, and thereby tighten the relaxation further (at least for the
children nodes, if not for resolving the LP at the same node).

REMARK 4. In our implementation of the branch-and-bound algorithm
that includes features (a)–(d) outlined above, a depth-first strategy was
adopted to develop the enumeration tree. For the purpose of obtaining
tight lower bounds, and to possibly update incumbent solutions, a round-
ing heuristic as proposed in (b) was employed at every node of the branch-
and-bound tree. Also, based on our computational experiments, the SOS
branching was determined to be the best branching strategy for larger
problem instances (refer Table 6 for pertinent results), and was therefore
taken as the primary branching scheme. Here, in the depth-first framework,
we branched first along the Ju1 side to explore the corresponding child
node. (Note that for problems having a large number of clusters, to find
good feasible solutions more quickly, we could first explore the child node
along the side having the smaller Ju1j j or Ju2j j value, breaking ties by
choosing Ju1). The overall branch-and-bound algorithm was implemented
in C++, and the commercial software CPLEX 8.1.0 was invoked for the
purpose of solving the LP relaxations at each node. Furthermore, the opti-
mal basis for the parent node was used as an advanced-start basis for the
two children nodes, thereby enabling a quicker update for the solutions to
each of the node subproblems. Note that the CPLEX 8.1.0 command
options facilitate these implementations.

3. Computational Results

Throughout this section, we will use the following terminology:

UB0: Optimal objective function value of CP1:4 at node zero.
LB0: Objective function value of the heuristic solution to CP1.4 found

at node zero.
Z�0: Objective function value of CP1 corresponding to the heuristic

solution found at node zero.
LB�: Optimal objective function value of CP1.4.
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Z�: Optimal objective function value of CP1, evaluated at the optimal
solution to CP1.4.

Z�k�means: Best objective function value obtained via the k-means algo-
rithm.

CPU�: CPU time required to determine a global optimum for CP1.4 via
the proposed branch-and-bound algorithm.

CPUk�means: CPU time required for the k-means algorithm.
CPU0:CPU time required to determine a heuristic solution at node zero

via the solution to CP1:4.

First, for the purpose of illustration, consider the following clustering prob-
lem having ten data points to be divided into three clusters, where each data
point is assigned two attributes, (i.e., s ¼ 2). Table 1 provides the input data,
for this example problem. Using the above data, the LP relaxation of Problem
CP1.4 was solved and the optimal solution value at node zero (UB0) was
found to be 43156. Applying the rounding heuristic described in Section 2, we
obtained an incumbent value (LB0) of 22434.68. Hence, the gap ratio at node
zero is given by UB0=LB0 = 1.9236. Actually, since LB� ¼ 27884:5, as deter-
mined below, the true LP-IP gap at node zero is UB0=LB

� = 1.5476. Also, the
objective function value for the minimization problem CP1 (computed by
substituting the (w, z) parts of the heuristically determined node zero incum-
bent solution into (1a)) was found to be Z�0 ¼ 18484:35. Next, using the SOS
branching strategy designed in (17a) and Remark 3, from the LP solution at
node zero we get h3 ¼ argmax

i
hif g = 1174, and the corresponding h3j values

are given by {766, 300.44, 107.56}. Hence, p = 1, and we can now formulate
the subnode problems by splitting J3 � f1; 2; 3g into two subsets, J3;1 ¼ f1g
and J3;2 ¼ f3; 2g, and respectively imposing the constraints w31 ¼ 1 and
w32 þ w33 ¼ 1 for the corresponding subnode problems. Employing a depth-
first strategy, Figure 1 depicts the (partial) branch-and-bound tree generated
up to node eight, and illustrates the SOS branching computations. Continuing
to completion, the optimal objective function value for Problem CP1.4 was
found to be LB� = 27884.5, and the corresponding Z� ¼ 15805:25. A total of
27 nodes were enumerated in determining this optimal solution. For the pur-
pose of comparison, the above problem was solved via the k-means algorithm,
and the optimal objective function value for Problem CP1 was found to be
Z�k�means ¼ 34404:857. (Note that, since the k-means algorithm requires the
cluster centers as an input, its performance can be significantly enhanced by a

Table 1. Attributes for the 10 data points in R2 for the illustrative example

Points

Attributes 1 2 3 4 5 6 7 8 9 10

1 )57 54 46 8 )36 )22 34 74 )6 21

2 28 )65 79 111 52 )76 129 6 )41 45
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good estimate of the initial cluster centers. In our computations, five randomly
generated cluster center configurations were examined, and the best resulting
solution was used for the above comparison). Considering the ratio
Z�k�means

	
Z� ¼ 2:176, it is evident that the performance of the optimization

algorithm is considerably superior to the k-means algorithm. Indeed, even
from the ratio Z�k-means

	
Z�0 ¼ 1:86, we see that the feasible solution obtained

from node zero of the optimization problem itself is significantly better than
the k-means solution. Figure 2 displays the optimal clustering patterns
obtained via the proposed optimization algorithm (solid lines) and via the k-
means algorithm (dashed lines).

-100

-50

0

50

100

150

-80 -60 -40 -20 0 20 40 60 80 100

 Solid line: Optimal clustering; Dashed line: k-means clustering. 

Figure 2. Clustering patterns obtained by solving Problem CP1.4 via the proposed algorithm and

by the k-means algorithm.

UB0 = 43156; u = 3; p = 1
LB0 = 22434.68

w32 + w33  = 11w31 =   

1 6 UB1 = 32295; u = 7; p = 1
LB1 = 20944.65

UB6 = 36778; u = 4; p = 2
LB6 = 24108.40 

2 5 7

UB7 = 25789.40 
LB7 = 23144  

      UB3 = LB3 = 19512.45  3 4   UB4 = LB4 =18965.55 

8

0

    UB2 = 22517.35; u = 6; p = 2
LB2 = 21684.80  UB8 = 29992.43

 LB8 = 23278.55 
 UB5 =        -                                         ∞

Figure 1. Branch-and-bound tree illustrating the SOS branching strategy.
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Next, we used the following standard data sets given in Späth (1980) to
test our proposed methodology:

1. Data Set 1. This is a set of Cartesian coordinates for 22 German
towns, which yields a clustering problem having 22 points in a two-
dimensional space.

2. Data Set 2. This is a set of Cartesian coordinates for 59 German
towns, which yields a clustering problem having 59 points in a two-
dimensional space.

3. Data Set 3. This pertains to 89 postal zones in Germany, where each
zone has three attributes, namely, surface area (measured in square
kilometers), population, and the density of population. This yields a
clustering problem having 89 points in a three-dimensional space.

4. Data Set 4. This is also based on the 89 postal zones of Data Set 3,
but considers four attributes, namely, the number of self-employed
people, civil servants, clerks, and manual workers. This yields a clus-
tering problem having 89 points in a four-dimensional space.

The above-mentioned data sets were used to provide the input data for
Problem CP1.4, and the performance of the proposed approach was com-
pared with the k-means algorithm. Tables 2 and 3 display the results
obtained for the cases of three and five cluster centers, respectively.
Note that, on an average, for the case of three-cluster centers, the

k-means algorithm required 31.65% of the CPU time consumed by
the proposed approach, but the quality of the solution (with respect to
the CP1 objective values) was significantly inferior being worse (greater)
by a factor of 4.862. Indeed, the heuristic at node zero itself uniformly
dominated the k-means algorithm, determining an objective function
value that is 11.56% better (lesser) on an average, while consuming only
12.05% of CPU time. Similarly, in the case of five-cluster centers, the
k-means algorithm required 22.76% of the time taken by the proposed
exact approach, but produced a solution that was greater by a factor of
4.34. Again, the solution obtained by our method at node zero itself
dominated the k-means solution, improving it on an average by 15.66%,
while consuming only 11.45% of the CPU time required. Furthermore,
the UB0=LB

� column in Tables 2 and 3 records the LP-IP gap having
an average value of 1.90 and 1.66, for three and five cluster centers,
respectively. Also, a comparison of this ratio with UB0=LB0 reflects the
extent of improvement in the final objective value attained (LB�) versus
the node zero incumbent value LB0.
Note that the performance of the branch-and-bound algorithm is influ-

enced by three factors: First, choosing the best model formulation among
variations of Problem CP1.4; second, selecting an appropriate strategy to
ameliorate the effects of symmetry and third, implementing a judicious
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branching mechanism. Hence, prior to evaluating the robustness of the
proposed approach on relatively larger problem instances, several compu-
tational tests were performed on some sample problems to ascertain the
effects of the foregoing three features and thereby, compose a suitable algo-
rithmic approach. The results of these various experimental runs are
recorded in Tables 4–7.
To begin with, Table 4 displays the comparative results obtained for the

two proposed symmetry-defeating strategies. For this purpose, four ran-
domly generated sample problems involving three clusters, and having the
number of data points and attributes (dimension) as indicated in Table 4
were solved, with the model variations being CP1.4 without (16f, g), but
including either (13a, b), or (14), or neither. Also, in Table 4, the values in
the parentheses recorded for each cell indicate the two-tuple
ðUB0=LB0;CPU

�Þ, i.e., the gap ratio at node zero and the total CPU time.
Based on the results obtained, note that Problem CP1.4 with (14) included
obtains an average UB0=LB0 gap ratio of 10.1 (which is marginally worse
than that for CP1.4 with (13a, b) included) but consumes the least amount
of CPU time. Evidently, attempting to identify distinct clusters based on

Table 4. Variations of Problem CP1.4 to test the effectiveness of the different symmetry defeating stra-

tegies, measured in terms of gap ratio at node zero and the CPU time

Problem type Data Set Averages

1 2 3 4

(250, 4) (250, 6) (500, 4) (500, 6)

CP1.4 without (16f, g) and

only (13) included

(9.05, 144.11) (8.74, 288.42) (6.87, 312.62) (14.67, 421.6) (9.83, 280.68)

CP1.4 without (16f, g) and

only (14) included

(8.75, 128.40) (8.74, 269.10) (8.08, 279.05) (14.88, 387.2) (10.1, 271.05)

CP1.4 without (16f, g) and

neither (13, 14)

(9.24, 144.45) (11.67, 298.4) (12.43, 344.5) (15.45, 474.5) (12.19, 315.4)

Table 5. Variations of Problem CP1.4 to test the effectiveness of the different bounding constraints

measured in terms of the gap ratio at node zero and the CPU time

Problem type Data Set Averages

1 2 3 4

(250, 4) (250, 6) (500, 4) (500, 6)

CP1.4 with only

(16f) included

(9.24, 4.36,

138.76)

(10.3, 5.75,

266.0)

(8.55, 4.08,

332.62)

(15.45, 7.88,

442.6)

(10.9, 5.51, 295.0)

CP1.4 with both

(16f, g) included

(7.44, 2.84,

116.81)

(8.74, 3.90,

269.10)

(7.90, 3.37,

258.2)

(12.33, 4.97,

369.3)

(9.1, 3.77, 253.35)

CP1.4 with neither

(16f, g) included

(9.24,4.36,

144.45)

(11.67, 6.44,

298.4)

(12.43, 8.15,

344.5)

(15.45, 8.03,

474.5)

(12.19, 6.74, 315.4)
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the allocation of a set of most dispersed points serves to provide an
effective symmetry-defeating strategy, and is the one we propose to imple-
ment henceforth. Note that ignoring the effects of symmetry takes 19.36%
greater effort, and is clearly not advisable.
Next, the efficacy of including the constraints (16f) and (16g) was tested.

Here, the performance of CP1.4 measured according to the gap ratio at
node zero, both with respect to the node zero incumbent value LB0 and
the optimal solution value LB�, as well as the CPU time consumed was
examined for the three cases corresponding to using only (16f), using (16f)
and (16g), and using neither. (Partial results for the most latter case are
given in Table 4). Table 5 displays the results obtained for these various
formulations as a three-tuple given by (UB0=LB0;UB0=LB

�;CPU�), and
provides a measure of the quality of the LP relaxation. Observe that
including constraints (16f) and (16g) leads to a decrease in the node zero
gap ratio, with respect to both the node zero incumbent value LB0 and the
optimal solution value LB�, as well as reduces the overall CPU effort. In
comparison with the case wherein neither of (16f, g) was included, these
values decreased by 25.34, 44.06, and 19.67%, respectively. Likewise, there
is a decrement of 16.51, 31.57, and 14.1% in these respective values, in
comparison with the case when only (16f) is present. Hence, we recom-
mend incorporating both (16f) and (16g) in the model formulation.
The third test performed was to evaluate the two alternative branching

strategies proposed in Section 2, based on imposing the dichotomy wuv ¼ 0

Table 6. Performance of the different branching strategies, measured in terms of the number of nodes

enumerated and the CPU time

Branching rule Data set Averages

1 2 3 4

(250, 4) (250, 6) (500, 4) (500, 6)

CP1.4 with branching

strategy (17a, b)

(1068, 113.2) (1454, 256.0) (2455, 340.45) (3580, 462.4) (2139, 293.0)

CP1.4 with SOS

branching strategy

(866, 116.81) (974, 269.1) (1375, 258.2) (2421, 369.3) (1409, 271.0)

Table 7. The performance of CP1.4 via the default strategies of CPLEX-MIP 8.1.0 and CP1.3 via

BARON, measured in terms of CPU time

Problem type Data set Averages

1 2 3 4

(250, 4) (250, 6) (500, 4) (500, 6)

CP1.4 via CPLEX-MIP 8.1.0 default settings 263.44 360.83 577.0 711.25 478.13

CP1 with (14) via the BARON global optimizer 388.45 344.67 649.07 697.7 468.61
Z�BARON

Z� 1.0 2.43 1.79 3.45 2.16
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or 1 on a single variable as identified by (17a, b), or based on the SOS par-
titioning scheme as designated in Remark 3. The performance of these
branching strategies is reported in Table 6 in terms of the two-tuple: (num-
ber of nodes enumerated in the branch-and-bound tree, CPU time taken to
determine an optimal solution). The results obtained appear to indicate
that the partitioning scheme given by (17a, b) is more efficient for smaller
sized problems, but the SOS branching strategy begins to dominate as the
size of the problem increases.
Although the SOS branching strategy uniformly dominates in terms of

the number of nodes enumerated, the effort required at each node is
greater and hence, for the relatively smaller sized problems, more CPU
time is taken to determine an optimal solution. However, as the problem
size increases, the number of nodes enumerated is considerably larger for
the branching strategy (17a, b) as compared with the SOS branching
method to the extent that the SOS branching scheme begins to dominate.
Naturally, the solution of larger sized problems more effectively is of
greater concern, and so we recommend the use of the SOS branching strat-
egy.
Finally, for the purpose of comparison, a computational study was per-

formed to test the efficacy of solving the enhanced model formulation
CP1.4 directly by the commercial software CPLEX-MIP 8.1.0 using its
default settings. Furthermore, as a point of interest, the commercial global
optimizer BARON (refer Sahinidis, 1996, 1999–2000) was utilized to
directly solve the original model CP1 augmented by the symmetry-defeat-
ing constraints (14). Let us denote the best objective function value
obtained by solving CP1 with (14) via BARON as Z�BARON. Table 7 dis-
plays the CPU times obtained for each of these cases, and the ratios of the
final objective function values. Comparing the results displayed in Table 7
with those in Table 6, it can be seen that both CP1.4 solved directly by
CPLEX-MIP 8.1.0 as well as CP1 with (14) solved via BARON consume a
significantly greater CPU time for larger problem instances, as compared
with using the proposed branch-and-bound algorithm. Indeed, in those
instances where solving the nonlinear program CP1 with (14) via BARON
dominated in terms of CPU time, it terminated at a significantly inferior
local optimal solution (as recorded by the ZBARON

�=Z� values). Assimilat-
ing the information given in Tables 4–7, we conclude that Problem CP1.4
including the constraints (16f, g) along with the symmetry-defeating mecha-
nism given by (14), and solved via the proposed branch-and-bound algo-
rithm utilizing the SOS branching scheme affords the most viable
composition of the tested strategies for solving relatively large instances of
the hard clustering problem.
To reinforce this and to establish the robustness of the proposed

approach, we solved several additional problems of larger sizes, and also
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compared the results obtained with those produced by the popular k-means
algorithm. The number of data points in these test instances was varied
from 250 to 1000 in steps of 250, and the dimension of the space was var-
ied from two to eight, in steps of two, thereby leading to a total of
4 · 4 ¼ 16 test problems, with the smallest data set having 250 points in a
two-dimensional space, and the largest problem having 1000 points in an
eight-dimensional space. The number of clusters (c) for each case was
taken to be either three (Table 8) or five (Table 9).
From the results displayed in Tables 8 and 9, note that the k-means algo-

rithm requires a significantly lesser CPU time as compared with the pro-
posed exact approach, but the best solution produced by the k-means
algorithm is also substantially inferior. However, the node zero heuristic
solution produced by the proposed approach uniformly dominates the
k-means solution with respect to both quality and effort in most of the
problem instances, with the exceptions being shaded in the rows of Tables 8
and 9. On an average, to obtain a feasible solution to Problem CP1 based
on the node zero analysis alone, the CPU time required is on an average
17.2% lesser than for the k-means algorithm, yet the quality of the solution
is 13.3% better in terms of the objective function value for the three cluster
center case. A similar result holds true for the case of five cluster centers.
Using a more sophisticated heuristic than the one advocated in Remark 4,
or improving this solution by appending some steps of a suitable meta-
heuristic approach such as the genetic algorithm or simulated annealing,

Table 8. Results for the proposed approach and the k-means algorithm for large problem instances

having three cluster centers

Data sets Parameters

UB0

LB0

UB0

LB�
Z�0
Z�

Z�k-means

Z�
CPU� (s) CPUk-means(s)

CPUCP1:4

CPUk-means

CPU0

CPUk-means

(250, 2) 6.72 3.17 2.45 3.34 35.411 3.314 10.685 0.635

(500, 2) 7.19 1.85 2.61 3.58 74.554 5.335 13.974 0.504

(750, 2) 25.4 4.44 12.9 9.00 150.30 11.027 13.630 0.978

(1000, 2) 13.1 2.29 4.70 6.62 180.87 17.578 10.289 0.844

(250, 4) 15.8 2.76 5.66 8.02 139.19 4.58 30.392 0.751

(500, 4) 26.5 4.64 11.8 11.07 246.60 8.572 28.768 1.779

(750, 4) 8.89 1.55 3.21 4.45 377.67 10.208 36.997 0.615

(1000, 4) 32.2 5.64 11.4 16.4 708.10 17.578 40.283 0.497

(250, 6) 16.5 3.89 5.88 8.34 384.33 23.801 16.147 0.555

(500, 6) 29.9 5.23 13.2 12.54 466.48 18.547 25.151 1.961

(750, 6) 21.5 3.76 7.64 10.9 485.43 14.602 33.244 0.783

(1000, 6) 7.09 2.24 2.58 3.53 508.38 18.790 27.056 0.634

(250, 8) 31.0 5.43 15.5 11.2 392.33 17.578 22.316 0.932

(500, 8) 4.21 2.73 1.57 2.06 945.16 20.316 46.523 0.589

(750, 8) 32.6 5.71 11.5 10.6 1181.1 32.106 36.787 1.089

(1000, 8) 23.7 4.15 8.40 12.0 1425.3 39.925 35.701 0.603

Averages 18.9 3.71 7.56 8.72 481.33 16.491 26.746 0.859
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might lead to a more effective procedure. Moreover, utilizing a better
approximation to the convex hull of data points in the model formulation
could lead to a further improvement in the performance of both the exact
and heuristic routines. We recommend these investigations for future
research.

5. Summary and Extensions for Further Research

This research effort addresses the issue of determining a global optimum to
the hard clustering problem, where the objective function seeks to minimize
the total squared (Euclidean) distance from each data point to the center of
the cluster to which it is assigned. A series of enhanced reformulations of
this problem were presented, augmented by valid inequalities and RLT-
based constraints. A specialized branch-and-bound algorithm was designed
for the resulting equivalent 0-1 mixed-integer programming problem. Sev-
eral computational experiments were performed using standard data sets as
well as synthetically generated test cases, to explore the efficacy of including
the different proposed model enhancement strategies, as well as to study the
effectiveness of the heuristic scheme implemented at the root node. Further-
more, this performance was compared with the k-means algorithm (see
Forgy, 1966; McQueen, 1967) that is popularly used in the literature on this

Table 9. Results for the proposed approach and the k-means algorithms for large problem instances

having five cluser centers

Data sets Parameters

UB0

LB0

UB0

LB�
Z�0
Z�

Z�k-means

Z�
CPU� (s) CPUk-means (s)

CPUCP1:4

CPUk-means

CPU0

CPUk-means

(250, 2) 12.4 2.17 2.29 2.77 28.383 1.793 15.829 0.681

(500, 2) 12.1 3.11 5.33 6.43 73.495 2.887 25.457 0.729

(750, 2) 8.26 1.44 8.51 7.85 127.89 5.967 21.433 1.106

(1000, 2) 1.37 1.23 8.07 9.74 191.35 16.092 11.891 0.574

(250, 4) 2.98 1.52 6.80 8.21 116.81 4.638 25.185 0.722

(500, 4) 3.13 1.54 5.13 4.99 258.20 5.524 46.741 0.955

(750, 4) 14.2 3.48 8.21 9.91 349.13 12.092 28.873 0.661

(1000, 4) 1.21 1.21 11.2 13.6 360.20 12.879 27.968 0.935

(250, 6) 1.71 1.29 3.89 4.70 269.10 10.036 26.813 0.997

(500, 6) 25.2 4.41 8.13 7.40 369.33 7.901 46.744 1.716

(750, 6) 6.83 1.19 7.70 9.29 475.24 10.167 46.743 0.736

(1000, 6) 1.23 1.21 5.21 6.29 491.35 26.092 18.831 0.414

(250, 8) 2.47 1.43 6.79 8.19 313.84 10.993 28.549 0.915

(500, 8) 25.0 4.37 4.71 5.69 812.03 17.373 46.740 0.642

(750, 8) 1.05 1.05 10.8 13.1 1009.8 21.604 46.741 0.614

(1000, 8) 11.6 3.03 8.83 9.45 1257.5 26.905 46.741 0.785

Averages 13.1 2.10 6.97 7.97 406.48 12.058 33.708 0.611
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topic. The results support the robustness of the proposed approach, and
exhibit its superiority over the k-means algorithm (even as a heuristic based
on the node zero analysis). In particular, the RLT-enhanced model CP1.4
coupled with a valid symmetry-defeating strategy, and solved via the pro-
posed branch-and-bound algorithm using an SOS branching mechanism
yielded the best combination of the strategies tested, and is recommended
for solving the hard clustering problem. Note that in practice, cluster analy-
sis problems often involve very large data sets, and therefore, good heuristic
procedures are essential for handling such problem instances. Our research
suggests that designing heuristic methods based on constructs that are bor-
rowed from strong effective exact procedures might be a prudent approach.
Finally, note that the number of cluster centers is introduced as a fixed,

external parameter into the optimization model, as opposed to finding an
optimal number of clusters, given a certain data set. A decision criterion to
determine an optimal number of clusters in hierarchical clustering was
advocated by Jung et al. (2003). Our work could be extended to accommo-
date this feature as well. As another possible extension, an alternative idea
that one could use to address the issue of symmetry (see Remark 2), as
well as to develop an effective heuristic procedure is as follows.
Define a cluster vector vr, for any index r, to have n components, with

the ith component being 1 if the point ai is assigned to the particular clus-
ter, and 0 otherwise.
Let

Vr ¼ i : ðvrÞi ¼ 1
� �

: ð18Þ
Given a cluster vector vr with the associated set of assigned points Vr, the
optimal center location z has components given via (2b) as

z�k ¼
X

i2Vr

aik

,
Vrj j: ð19Þ

The objective cost term associated with this cluster vector, Cr, is given as
follows, using (3) and (19).

Cr �
X

i2Vr

Xs

k¼1
ðz�k � aikÞ2 ¼

X

i2Vr

Xs

k¼1
a2ik �

1

Vrj j
X

k

X

i2Vr

aik

( )2

: ð20Þ

Suppose that we have generated several potential cluster vectors indexed
by r = 1, 2,. . ., R, based on various covers of the scatter of data points.
Then we can solve the following set partitioning problem (SPP), where e is
a vector of n ones.

SPP : Minimize
XR

r¼1
Crxr ð21aÞ
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subject to
XR

r¼1
vrxr ¼ e ð21bÞ

x binary: ð21cÞ

Note that feasibility of (21a)–(21) can be assured by including within it a
known partition of the data points into suitable cluster vectors. Further-
more, having solved this, we could try generating additional clusters that
might yield a negative reduced cost for the LP relaxation SPP (and hence,
perhaps lead to an improved IP solution) by monitoring the following
reduced cost expression, as points are added to Vr, where �p is an optimal
dual solution vector associated with (21b).

Cr � �pvr ¼
Xs

k¼1

X

i2Vr

a2ik �
1

Vrj j
X

i2Vr

aik

" #28
<

:

9
=

;�
X

i2Vr

�pi: ð22Þ

Conceivably, some genetic algorithmic concepts could be applied to gen-
erate such advantageous members from the population of cluster vectors.
Turning this into an effective heuristic scheme is a topic that is recom-
mended for future research. Note that this algorithmic process could also
possibly be converted into an exact algorithm by using branch-and-price
concepts, although one would need to contend in this context with a non-
convex objective function, which would be problematic.
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32. Späth, H. (1980), Cluster Analysis Algorithms for Data Reduction and Classification of

Objects, John Wiley and Sons, New York, NY.
33. Sultan, M., Wigle, D.A., Cumbaa, C.A., Maziarz, M., Glasgow, J., Tsao, M.S. and

Jurisica, I. (2002), Binary tree-structured vector quantization approach to clustering and
visualizing microarray data, Bioinformatics 18(1), 111–119.

34. Vinod, H.D. (1969), Integer programming and the theory of grouping, Journal of Amer-

ican Statistical Society 64, 506–519.
35. Ward, J.H. Jr. (1963), Hierarchical grouping to optimize an objective function, Journal of

American Statistical Society 58, 236–244.

306 H. D. SHERALI AND J. DESAI


